Concentrations of retention solutes in uremia vary over a broad range, from nanograms per liter to grams per liter. Low concentrations are found especially for the middle molecules. A substantial number of molecules are protein bound and/or middle molecules, and many of these exert toxicity and are characterized by a high range of toxic over normal concentration (CU/CN ratio). Hence, uremic retention is a complex problem that concerns many more solutes than the current markers of urea and creatinine alone. This list provides a basis for systematic analytic approaches to map the relative importance of the enlisted families of toxins.
Activation of the transcription factor nuclear factor-B (NF-B) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-B in vitro, we observed a long-lasting sustained activation of NF-B in the absence of decreased IB␣ in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-Bp65. A comparable increase in NF-Bp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid- peptide ( T issue culture models of cellular activation provide easily accessible systems for detailed analysis of mechanisms potentially underlying the pathogenesis of human disease. However, the time course of such in vitro models is usually significantly abbreviated, limited to hours to days, compared with the pace of disorders under study in vivo. This indicates the importance of seeking out mechanisms in cell culture that might bridge the gap that accounts for the chronicity of cellular perturbation observed in the intact organism.The transcription factor nuclear factor-B (NF-B) has been proposed as a critical bridge between oxidant stress and gene expression (1-8). Exposure of cells to inflammatory, infectious, or other stressful stimuli results in rapid phosphorylation and degradation of IB␣ and the subsequent release and translocation of NF-B into the nucleus (1-11). This mechanism ensures quick and finely tuned cellular responses in the absence of de novo protein synthesis. Because transcription of IB␣ is positively autoregulated by NF-B (9 -11), activation of NF-B is usually self-terminated within minutes to hours (1-11). Such a scenario lends itself to analysis by short-term in vitro studies in which stimulus-induced responses are transient and the system returns to the baseline state over hours. Consequently, induction of NF-B and enhanced transcription of its target genes in vitro have been studied mainly in the setting of acute cellular responses.Reactive oxygen intermediates are generated by processes that occur over seconds. However, increasing evidence suggests a role for oxidative stress in chronic degenerative diseases such as atherosclerosis (1,6,12,13), diabetes (14 -16), and Alzheimer's disease (17)(18)(19). This indicates the relevance of signal transduction systems such as NF-B, which are capable of transforming the appearance and disappearance of short-lived oxygen free radicals into more sustained signals for cellular activation
The 1,2-dicarbonyl compounds 3-deoxyglucosulose (3-DG), glyoxal (GO), and methylglyoxal (MGO) were measured as the corresponding quinoxalines after derivatization with orthophenylendiamine using RP-HPLC and UV-detection in commercially available honey samples. Whereas for most of the samples values for 3-DG, MGO, and GO were comparable to previously published data, for six samples of New Zealand Manuka (Leptospermum scoparium) honey very high amounts of MGO were found, ranging from 38 to 761 mg/kg, which is up to 100-fold higher compared to conventional honeys. MGO was unambigously identified as the corresponding quinoxaline via photodiodearry detection as well as by means of mass spectroscopy. Antibacterial activity of honey and solutions of 1,2-dicarbonyl towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were analyzed using an agar well diffusion assay. Minimum concentrations needed for inhibition of bacterial growth (minimum inhibitory concentration, MIC) of MGO were 1.1 mM for both types of bacteria. MIC for GO was 6.9 mM (E. coli) or 4.3 mM (S. aureus), respectively. 3-DG showed no inhibition in concentrations up to 60 mM. Whereas most of the honey samples investigated showed no inhibition in dilutions of 80% (v/v with water) or below, the samples of Manuka honey exhibited antibacterial activity when diluted to 15-30%, which corresponded to MGO concentrations of 1.1-1.8 mM. This clearly demonstrates that the pronounced antibacterial activity of New Zealand Manuka honey directly originates from MGO.
1,2-Dicarbonyl compounds, formed from carbohydrates during thermal processing in the course of caramelization and Maillard reactions, are intensively discussed as precursors for advanced glycation endproducts in foods and in vivo. To obtain information about the uptake of individual compounds with commonly consumed foods, a comprehensive analysis of the content of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), and methylglyoxal (MGO) together with 5-hydroxymethylfurfural (HMF) in 173 food items like bakery products, pasta, nonalcoholic and alcoholic beverages, sweet spreads, and condiments was performed. Following suitable cleanup procedures, 1,2-dicarbonyl compounds were quantitated after derivatization with o-phenylenediamine via RP-HPLC with UV detection. 3-DG proved to be the predominant 1,2-dicarbonyl compound with concentrations up to 410 mg/L in fruit juices, 2622 mg/L in balsamic vinegars, and 385 mg/kg in cookies, thus exceeding the corresponding concentrations of HMF. 3-DGal was found to be of relevance in many foods even in the absence of galactose. MGO was only of minor quantitative importance in all foods studied, except for manuka honey. Dietary intake was estimated to range between 20 and 160 mg/day for 3-DG and 5 and 20 mg/day for MGO, respectively.
The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.