Nanobody binding
stabilizes G-protein-coupled receptors (GPCR)
in a fully active state and modulates their affinity for bound ligands.
However, the atomic-level basis for this allosteric regulation remains
elusive. Here, we investigate the conformational changes induced by
the binding of a nanobody (Nb80) on the active-like β2 adrenergic
receptor (β2AR) via enhanced sampling molecular dynamics simulations.
Dimensionality reduction analysis shows that Nb80 stabilizes structural
features of the β2AR with an ∼14 Å outward movement
of transmembrane helix 6 and a close proximity of transmembrane (TM)
helices 5 and 7, and favors the fully active-like conformation of
the receptor, independent of ligand binding, in contrast to the conditions
under which no intracellular binding partner is bound, in which case
the receptor is only stabilized in an intermediate-active state. This
activation is supported by the residues located at hotspots located
on TMs 5, 6, and 7, as shown by supervised machine learning methods.
Besides, ligand-specific subtle differences in the conformations assumed
by intracellular loop 2 and extracellular loop 2 are captured from
the trajectories of various ligand-bound receptors in the presence
of Nb80. Dynamic network analysis further reveals that Nb80 binding
triggers tighter and stronger local communication networks between
the Nb80 and the ligand-binding sites, primarily involving residues
around ICL2 and the intracellular end of TM3, TM5, TM6, as well as
ECL2, ECL3, and the extracellular ends of TM6 and TM7. In particular,
we identify unique allosteric signal transmission mechanisms between
the Nb80-binding site and the extracellular domains in conformations
modulated by a full agonist, BI167107, and a G-protein-biased partial
agonist, salmeterol, involving mainly TM1 and TM2, and TM5, respectively.
Altogether, our results provide insights into the effect of intracellular
binding partners on the GPCR activation mechanism, which should be
taken into account in structure-based drug discovery.