MicroRNAs (miRNAs), defined as small non-coding RNA molecules, are fine regulators of gene expression. In plants, miRNAs are well-known for regulating processes spanning from cell development to biotic and abiotic stress responses. Recently, miRNAs have been investigated for their potential transfer to distantly related organisms where they may exert regulatory functions in a cross-kingdom fashion. Cross-kingdom miRNA transfer has been observed in host-pathogen relations as well as symbiotic or mutualistic relations. All these can have important implications as plant miRNAs can be exploited to inhibit pathogen development or aid mutualistic relations. Similarly, miRNAs from eukaryotic organisms can be transferred to plants, thus suppressing host immunity. This two-way lane could have a significant impact on understanding inter-species relations and, more importantly, could leverage miRNA-based technologies for agricultural practices. Additionally, artificial miRNAs (amiRNAs) produced by engineered plants can be transferred to plant-feeding organisms in order to specifically regulate their crosskingdom target genes. This minireview provides a brief overview of cross-kingdom plant miRNA transfer, focusing on parasitic and mutualistic relations that can have an impact on agricultural practices and discusses some opportunities related to miRNAbased technologies. Although promising, miRNA cross-kingdom transfer remains a debated argument. Several mechanistic aspects, such as the availability, transfer, and uptake of miRNAs, as well as their potential to alter gene expression in a cross-kingdom manner, remain to be addressed.