Accidental radiation exposure is a threat to human health that necessitates effective clinical diagnosis. Suitable biomarkers are urgently needed for early assessment of exposure dose. Existing technologies being used to assess the extent of radiation have notable limitations. As a radiation biomarker, miRNA has the advantages of simple detection and high throughput. In this study, we screened for miRNAs with dose and time dependent responses in peripheral blood leukocytes via miRNA sequencing in establishing the animal model of acute radiation injury. Four radiation-sensitive and stably expressed miRNAs were selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the 48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p, mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression and irradiation dose were plotted. Then, the results were validated by RT-qPCR in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed good correlation at both 24 h and 48 h after irradiation. In a conclusion, the miRNAs that are sensitive to ionizing radiation with dose dependent effects were selected out, which have the potential of forming a rapid assessment scheme for acute radiation injury.