Improved survival of patients with acute lymphoblastic leukemia (ALL) has emerged from identifying new prognostic markers; however, 20% of children still suffer recurrence. Previously, the altered expression of Fat1 cadherin has been implicated in a number of solid tumors. In this report, in vitro analysis shows that Fat1 protein is expressed by a range of leukemia cell lines, but not by normal peripheral blood (PB) and bone marrow (BM) cells from healthy donors. In silico analysis of expression of array data from clinical leukemias found significant levels of Fat1 transcript in 11% of acute myeloid leukemia, 29% and 63% of ALL of B and T lineages, respectively, and little or no transcript present in normal PB or BM. Furthermore, in two independent studies of matched diagnosis --relapse of precursor B-cell (preB) ALL pediatric samples (n ¼ 32 and n ¼ 27), the level of Fat1 mRNA expression was prognostic at the time of diagnosis. High Fat1 mRNA expression was predictive of shorter relapse-free and overall survival, independent of other traditional prognostic markers, including white blood cell count, sex and age. The data presented demonstrate that Fat1 expression in preB-ALL has a role in the emergence of relapse and could provide a suitable therapeutic target in high-risk preB-ALL.Leukemia (
INTRODUCTIONChildren with acute lymphoblastic leukemia (ALL) continue to suffer a 20% incidence of relapse after treatment with the best available therapy. High-resolution genomic profiling, including analysis of single-nucleotide polymorphisms and copy number abnormalities, has greatly aided an understanding of the molecular mechanisms underlying treatment outcome, therapy response and the biology of relapse. 1,2 For precursor B-cell (preB) ALL, genomic studies have shown that copy number abnormalities in genes involved in lymphoid differentiation and cell cycle control are common, with deletions, or part thereof, found in PAX5, EBF1, IKZF1, TCF-4, CDKN2A and RB1. 2 --5 Recent reports also indicate that deletions and nonsense mutations of the IKZF1 gene are significantly associated with poor relapse-free and overall survival rates in preB-ALL. 6 However, in light of these studies, questions remain on the biology of relapse, with marker analysis complicated by the fact that phenotypic shifts in preB-ALL blasts can occur between diagnostic and post-chemotherapy or relapse samples. 7 Those cells that give rise to relapse in some cases appear to be selected during treatment, with clonal evolution occurring of a minor subclone present at diagnosis rather than simply being the development of chemotherapeutic resistance of the original leukemic clone. 8,9 The inherent genetic heterogeneity