Diagnostic karyotype provides the framework for risk-stratification schemes in acute myeloid leukemia (AML); however, the prognostic significance of many rare recurring cytogenetic abnormalities remains uncertain. We studied the outcomes of 5876 patients (16-59 years of age) who were classified into 54 cytogenetic subgroups and treated in the Medical Research Council trials. In multivariable analysis, t(15;17)(q22;q21), t(8;21)(q22;q22), and inv(16)(p13q22)/t(16;16)(p13;q22) were the only abnormalities found to predict a relatively favorable prognosis (P < .001). In patients with t(15;17) treated with extended all-trans retinoic acid and anthracyclinebased chemotherapy, additional cytogenetic changes did not have an impact on prognosis. Similarly, additional abnormalities did not have a significant adverse effect in t(8;21) AML; whereas in patients with inv(16), the presence of additional changes, particularly ؉22, predicted a better outcome (P ؍ .004). In multivariable analyses, various abnormalities predicted a significantly poorer outcome, namely abn(3q) (excluding t(3;5)(q25;q34)), inv(3)(q21q26)/ t(3;3)(q21;q26), add(5q)/del(5q), ؊5, ؊7, add(7q)/del(7q), t(6;11)(q27;q23), t(10; 11)(p11ϳ13;q23), other t(11q23) (excluding t(9;11)(p21ϳ22;q23) and t(11;19)(q23;p13)), t(9;22)(q34;q11), ؊17, and abn(17p). Patients lacking the aforementioned favorable or adverse aberrations but with 4 or more unrelated abnormalities also exhibited a significantly poorer prognosis (designated "complex" karyotype group). These data allow more reliable prediction of outcome for patients with rarer abnormalities and may facilitate the development of consensus in reporting of karyotypic information in clinical trials involving younger adults with AML. This study is registered at http://www.isrctn.org as ISRCTN55678797 and ISRCTN17161961. (Blood. 2010;116(3): 354-365)
Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.