Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.
The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL), is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near the breakpoints; incorporation of non-templated sequence at the junction; ~30-fold enrichment at promoters and enhancers of genes actively transcribed in B-cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single cell tracking shows that this mechanism is active throughout leukemic evolution with evidence of localized clustering and re-iterated deletions. Integration of point mutation and rearrangement data identifies ATF7IP and MGA as two new tumor suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1 lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B-cell differentiation.
Key Points• Germ-line CEBPA mutations are highly penetrant, causing early-onset de novo AML associated with favorable survival outcomes.• Familial CEBPA-mutated AML displays a unique model of disease progression, with recurrence caused by novel, independent leukemic episodes.In-depth molecular investigation of familial leukemia has been limited by the rarity of recognized cases. This study examines the genetic events initiating leukemia and details the clinical progression of disease across multiple families harboring germ-line CEBPA mutations. Clinical data were collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n 5 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course, with different mutations identified at recurrence. Deep sequencing of diagnostic and relapse paired samples confirmed that relapse-associated CEBPA mutations were absent at diagnosis, suggesting recurrence was triggered by novel, independent clones. Integrated WES and deep sequencing subsequently revealed an entirely new complement of mutations at relapse, verifying the presentation of a de novo leukemic episode. The cumulative incidence of relapse in familial AML was 56% at 10 years (n 5 11), and 3 patients experienced ‡3 disease episodes over a period of 17 to 20 years. Durable responses to secondary therapies were observed, with prolonged median survival after relapse (8 years) and long-term overall survival (10-year overall survival, 67%). Our data reveal that familial CEBPA-mutated AML exhibits a unique model of disease progression, associated with favorable long-term outcomes. (Blood. 2015;126(10)
l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.