Follicular lymphoma (FL) is an incurable malignancy1, with transformation to an aggressive subtype being a critical event during disease progression. Here we performed whole genome or exome sequencing on 10 FL-transformed FL pairs, followed by deep sequencing of 28 genes in an extension cohort and report the key events and evolutionary processes governing initiation and transformation. Tumor evolution occurred through either a ‘rich’ or ‘sparse’ ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histones, JAK-STAT signaling, NF-κB signaling and B-cell development genes. Longitudinal analyses revealed chromatin regulators (CREBBP, EZH2 and MLL2) as early driver genes, whilst mutations in EBF1 and regulators of NF-κB signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides novel insights into the genetic basis of follicular lymphoma, the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations within the CPC represents an attractive therapeutic strategy.
Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Conclusion Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8+ T-cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective anti-tumor immune response.
We have profiled, for the first time, an evolving human metastatic microenvironment, measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, ECM organization and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer (HGSOC) metastases that ranged from minimal to extensive disease, we show how non-malignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, whilst also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and twelve other primary solid cancers, suggesting that there may be a common matrix response to human cancer.
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.