SummaryFocal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8+ T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8+ T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK’s immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8+ T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.
We have profiled, for the first time, an evolving human metastatic microenvironment, measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, ECM organization and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer (HGSOC) metastases that ranged from minimal to extensive disease, we show how non-malignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, whilst also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and twelve other primary solid cancers, suggesting that there may be a common matrix response to human cancer.
The majority of human pancreatic cancers have activating mutations in the KRAS proto-oncogene. These mutations result in increased activity of the NF-κB pathway and the subsequent constitutive production of proinflammatory cytokines. Here, we show that inhibitor of κB kinase 2 (Ikk2), a component of the canonical NF-κB signaling pathway, synergizes with basal Notch signaling to upregulate transcription of primary Notch target genes, resulting in suppression of antiinflammatory protein expression and promotion of pancreatic carcinogenesis in mice. We found that in the Kras G12D Pdx1-cre mouse model of pancreatic cancer, genetic deletion of Ikk2 in initiated pre-malignant epithelial cells substantially delayed pancreatic oncogenesis and resulted in downregulation of the classical Notch target genes Hes1 and Hey1. Tnf-α stimulated canonical NF-κB signaling and, in collaboration with basal Notch signals, induced optimal expression of Notch targets. Mechanistically, Tnf-α stimulation resulted in phosphorylation of histone H3 at the Hes1 promoter, and this signal was lost with Ikk2 deletion. Hes1 suppresses expression of Pparg, which encodes the antiinflammatory nuclear receptor Pparγ. Thus, crosstalk between Tnf-α/Ikk2 and Notch sustains the intrinsic inflammatory profile of transformed cells. These findings reveal what we believe to be a novel interaction between oncogenic inflammation and a major cell fate pathway and show how these pathways can cooperate to promote cancer progression.
Purpose In high-grade serous ovarian cancer (HGSOC), higher densities of both B cells and the CD8+ T-cell infiltrate were associated with a better prognosis. However, the precise role of B cells in the antitumor response remains unknown. As peritoneal metastases are often responsible for relapse, our aim was to characterize the role of B cells in the antitumor immune response in HGSOC metastases. Experimental Design Unmatched pre and post-chemotherapy HGSOC metastases were studied. B-cell localization was assessed by immunostaining. Their cytokines and chemokines were measured by a multiplex assay, and their phenotype was assessed by flow cytometry. Further in vitro and in vivo assays highlighted the role of B cells and plasma cell IgGs in the development of cytotoxic responses and dendritic cell activation. Results B cells mainly infiltrated lymphoid structures in the stroma of HGSOC metastases. There was a strong B-cell memory response directed at a restricted repertoire of antigens and production of tumor-specific IgGs by plasma cells. These responses were enhanced by chemotherapy. Interestingly, transcript levels of CD20 correlated with markers of immune cytolytic responses and immune complexes with tumor-derived IgGs stimulated the expression of the costimulatory molecule CD86 on antigen-presenting cells. A positive role for B cells in the antitumor response was also supported by B-cell depletion in a syngeneic mouse model of peritoneal metastasis. Conclusions Our data showed that B cells infiltrating HGSOC omental metastases support the development of an antitumor response.
The role of IL-17 and the IL-17 producing Th17 cells in cancer has recently become the focus of extensive investigation. An expanding body of literature implicate Th17 cells and their hallmark cytokine in both pro and anti-tumourigenic processes. In this review we describe their biological activities and outline the reciprocal interactions between Th17 cells and other cells of the immune system. We also discuss the evidence regarding their dual role in the tumour microenvironment. An understanding of the processes that regulate the pro or anti-tumour activities of Th17 cell and IL-17 will allow the development of more effective means for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.