The nuclear factor B (NF-B) signaling pathway is important in cancer-related infl ammation and malignant progression. Here, we describe a new role for NF-B in cancer in maintaining the immunosuppressive phenotype of tumor-associated macrophages (TAMs). We show that macrophages are polarized via interleukin (IL)-1R and MyD88 to an immunosuppressive " alternative " phenotype that requires I B kinase  -mediated NF-B activation. When NF-B signaling is inhibited specifi cally in TAMs, they become cytotoxic to tumor cells and switch to a " classically " activated phenotype; IL-12 high , major histocompatibility complex II high , but IL-10 low and arginase-1 low . Targeting NF-B signaling in TAMs also promotes regression of advanced tumors in vivo by induction of macrophage tumoricidal activity and activation of antitumor activity through IL-12 -dependent NK cell recruitment. We provide a rationale for manipulating the phenotype of the abundant macrophage population already located within the tumor microenvironment; the potential to " re-educate " the tumor-promoting macrophage population may prove an effective and novel therapeutic approach for cancer that complements existing therapies.
Solid tumors consist of neoplastic cells, non-malignant stromal cells, and migratory hematopoietic cells. Complex interactions between the cell types in this microenvironment regulate tumor growth, progression, metastasis, and angiogenesis. The cells and mediators of inflammation form a major part of the epithelial tumor microenvironment. In some cancers, inflammatory conditions precede development of malignancy; in others, oncogenic change drives a tumor-promoting inflammatory milieu. Whatever its origin, this "smoldering" inflammation aids proliferation and survival of malignant cells, stimulates angiogenesis and metastasis, subverts adaptive immunity, and alters response to hormones and chemotherapy. Cytokines are major mediators of communication between cells in the inflammatory tumor microenvironment. It is known that neoplastic cells often over-express proinflammatory mediators including proteases, eicosanoids, cytokines, and chemokines. Several cytokines such as macrophage migratory inhibitory factor (MIF), TNF-α, IL-6, IL-17, IL-12, IL-23, IL-10, and TGF-β have been linked with both experimental and human cancers and can either promote or inhibit tumor development. MIF is a major cytokine in many cancers and there is evidence that the cytokine is produced by both malignant cells and infiltrating leukocytes. In this article we will discuss the role of cancer-associated inflammation and the particular role of MIF in malignant disease.
Inhibitors against the p110δ isoform of PI3K have shown remarkable therapeutic efficacy in some human leukaemias1,2. Since p110δ is primarily expressed in leukocytes3, drugs against p110δ have not been considered for the treatment of solid tumours4. We report here that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells (Treg) unleashes CD8+ cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.
Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-α- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-α-dependent activation of JNK and NF-κB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-κB activity exhibited enhanced invasiveness. Inhibition of the NF-κB pathway by TNF-α neutralizing Abs, an NF-κB inhibitor, RNAi to RelA, or overexpression of IκB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-κB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-κB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-α, via NF-κB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.