Polyethylene is widely used as an agricultural film, but eco-friendly technology is lacking for its decomposition. Thus, recently, much attention has been paid to develop a technology for biological polyethylene decomposition. It has been expected that several oxidation steps will be required in the biological degradation of polyethylene. First, secondary alcohol is formed on the polyethylene chain, and then the alcohol is oxidized to a carbonyl group. In the subsequent process, the carbonyl group is converted to an ester by Baeyer-Villiger monooxygenase (BVMO), and this ester bond is expected to be cleaved by lipase and esterase in the final step. In this work, we reviewed BVMO as one of the promising enzymes for polyethylene decomposition, in terms of its reaction mechanism, classification, and engineering. In addition, we also give a brief perspective on polyethylene decomposition using BVMO.