Bromus sterilis is an annual weedy grass, causing high yield losses in winter cereals. Frequent use of herbicides had led to the evolution of herbicide-resistance in this species. Mechanisms underlying herbicide resistance in B. sterilis must be uncovered because this problem is becoming a global threat. qRT-PCR and the next-generation sequencing technologies can contribute to elucidation of the resistance mechanisms. Although qRT-PCR can calculate precise fold changes, its preciseness depends on the expression of reference genes. Regardless of stable expression in any given condition, no gene can act as a universal reference gene. Hence, it is necessary to identify the suitable reference gene for each species. To our knowledge, there are no reports on the suitable reference gene in any brome species so far. Thus, in this paper, the stability of eight genes were evaluated using qRT-PCR experiments followed by expression stability ranking via five most commonly used softwares for reference gene selection. Our findings suggest using a combination of 18S rRNA and ACCase to normalise the qRT-PCR data in B. sterilis. Besides, reference genes are also recommended for different experimental conditions. The present study outcomes will facilitate future molecular work in B. sterilis and other related grass species.