“…This would provide a bottom-up approach for the production of customized chemicals. Presuming that a likely ultimate speed for the product formation is 1 ms per molecule, an array of 100 nanopores working in parallel would yield approximately 3.6 × 10 8 products in less than 1 h. Nanopores have also been increasingly used as force transducers, allowing the controlled localization, trapping and orientation of a diverse range of biomolecules for single-molecule biophysics studies 130,139 . Finally, nanopore-based biomedical applications have developed beyond DNA sequencing and epigenetic modification analyses, and are now used to sense molecular biomarkers (proteins, metabolites and nucleic acids) in biofluids and other biological specimens.…”