Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction diode is demonstrated. The device exhibits typical Schottky diode current-voltage characteristics with a turn-on voltage of 0.7 V. Electroluminescence characterization shows good random lasing behavior and the output power is about 67 nW at a drive current of 100 mA. Excitonic recombination is responsible for lasing generation.Zn plasma is only observed under high applied bias, which can be distinguished from the random lasing spectral features near 380 nm. The laser diode based on the Schottky junction provides an alternative approach towards semiconductor random lasers.
An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.