The solution structure of the Link module from human TSG-6, a hyaladherin with important roles in inflammation and ovulation, has been determined in both its free and hyaluronan-bound conformations. This reveals a well defined hyaluronan-binding groove on one face of the Link module that is closed in the absence of ligand. The groove is lined with amino acids that have been implicated in mediating the interaction with hyaluronan, including two tyrosine residues that appear to form essential intermolecular hydrogen bonds and two basic residues capable of supporting ionic interactions. This is the first structure of a non-enzymic hyaladherin in its active state, and identifies a ligand-induced conformational change that is likely to be conserved across the Link module superfamily. NMR and isothermal titration calorimetry experiments with defined oligosaccharides have allowed us to infer the minimum length of hyaluronan that can be accommodated within the binding site and its polarity in the groove; these data have been used to generate a model of the complex formed between the Link module and a hyaluronan octasaccharide.Hyaluronan (HA), 1 a high molecular weight polysaccharide with a central role in extracellular matrix organization and cell adhesion in mammals (1), is essential to a wide range of normal physiological processes including development, immunology, and reproduction (2-4). Alterations in the metabolism and localization of this molecule underlie the progression of many diseases, for instance arthritis, pulmonary/vascular disorders, and cancer (5, 6). These diverse biological activities may seem surprising for a linear polymer composed entirely of a repeating disaccharide (i.e. -glucuronic acid-Ϫ1,3-N-acetylglucosamine-Ϫ1,4-; up to 10 7 Da) that, unlike other glycosaminoglycans, is neither attached to a core protein nor sulfated. This functional complexity is thought to arise from the interaction of HA with a large number of specific HA-binding proteins (7), which can form structurally diverse complexes (see Ref. 8). The majority of these "hyaladherins" belong to a superfamily of proteins that share a common ϳ100 amino acid domain, termed a Link module, that mediates the interaction with HA.Previously we have determined the solution structure of the Link module from human TSG-6 (the protein product of the tumor necrosis factor-stimulated gene-6 (9)), thereby defining the consensus fold for this superfamily (10). In TSG-6, a 35-kDa secreted protein composed mainly of contiguous Link and CUB modules, the Link module is sufficient to mediate a high affinity interaction with HA (10, 11); this has been termed a "type A" HA-binding domain (7). The HA receptor CD44, which has an important role in mediating lymphocyte migration, however, requires N-and C-terminal extensions to its Link module for correct folding and functional activity of its type B interaction domain. Most other members of the superfamily, such as link proteins and chondroitin-sulfate proteoglycans (critical for extracellular matrix organiza...