Protein-protein interaction networks mediate diverse biological processes by regulating various signaling hubs and clusters. 14-3-3 proteins, a family of phosphoserine/threonine-binding molecules, serve as major interaction hubs in eukaryotic cells and have emerged as promising therapeutic targets for various human diseases. In order to identify chemical probes for mechanistic studies and for potential therapeutic development, we have developed highly sensitive bioassays to monitor the interaction of 14-3-3 with a client protein. In this study, we describe a homogenous time-resolved fluorescence resonance energy transfer (TR-FRET) assay to detect the interaction of 14-3-3 with Bad, a proapoptotic member of the Bcl-2 family. Through a series of titration studies in which europium-labeled 14-3-3 serves as an FRET donor and a Dy647-labeled phosphorylated Bad, the peptide acts as an FRET acceptor, we have achieved a robust TR-FRET assay that is suitable for high-throughput screening (HTS) with an excellent signal-to-background ratio of >20 and Z 0 values >0.7. This assay was further miniaturized to a 1,536-well format for ultra-HTS (uHTS), and exhibited a similar robust performance. The utility and performance of the assay for uHTS were validated by (i) known inhibitors, including peptide R18 and small molecule FOBISIN101, and (ii) screening of a 51,200 compound library. This simple and robust assay is generally applicable to detect the interaction of 14-3-3 with other client proteins. It provides a sensitive and easy-to-use tool to facilitate the discovery of 14-3-3 protein inhibitors as well as to study 14-3-3-mediated protein-protein interactions.