a b s t r a c tChain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chainbranching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8 H 14 O 4 (e.g., diketo-hydroperoxide/ketohydroperoxy cyclic ether) and C 8 H 16 O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8 H 16 O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8 H 14 O 4 species are proposed to result from subsequent reactions of C 8 H 16 O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.