2020 IEEE Global Engineering Education Conference (EDUCON) 2020
DOI: 10.1109/educon45650.2020.9125252
|View full text |Cite
|
Sign up to set email alerts
|

Identifying Cheating Users in Online Courses

Abstract: Resumen Los estudiantes interactúan con los cursos en línea principalmente de dos maneras: revisando los materiales del curso y resolviendo ejercicios. Sin embargo, hay casos en los que el comportamiento de los estudiantes difiere y tiende a centrarse más en resolver ejercicios sin mirar los materiales del curso. Este tipo de interacción podría ser indicativo de un comportamiento poco ético, como los estudiantes que colaboran compartiendo respuestas entre ellos o cuentas falsas que usan los estudiantes para ob… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 22 publications
0
4
0
Order By: Relevance
“…Their results indicated high detection rates (sensitivity and specificity measures of 0.966 and 0.996, respectively). Equally, Sangalli et al (2020) achieve a 95% generalization accuracy in classifying instances of academic fraud using a Support Vector Machine algorithm.…”
Section: Harnessing Ai Technology To Detect and Deter Academic Fraudmentioning
confidence: 99%
“…Their results indicated high detection rates (sensitivity and specificity measures of 0.966 and 0.996, respectively). Equally, Sangalli et al (2020) achieve a 95% generalization accuracy in classifying instances of academic fraud using a Support Vector Machine algorithm.…”
Section: Harnessing Ai Technology To Detect and Deter Academic Fraudmentioning
confidence: 99%
“…Testing Students: ML algorithms are being used to assess students and provide constant feedback to teachers both in a classroom and blended learning setting. Several studies have explored ML based approaches to combat cheating and ensure the academic integrity of student assessments (Kamalov et al, 2021;Sangalli et al, 2020). In online education, it is particularly changeling for professors to supervise students during exams increasing the risk of academic misconduct.…”
Section: Education Quality Experience and Satisfactionmentioning
confidence: 99%
“…Along with this, a number of downsides in full-scale online training have been identified. Particularly, in massive open online courses (MOOCs), dropout rates reach 90% in a number of cases [11,12].…”
Section: Expanding the View Of Blended Learningmentioning
confidence: 99%