Asthma is a heterogeneous respiratory disease characterized by airway inflammation and obstruction. Despite recent advances, the genetic regulation of asthma pathogenesis is still largely unknown. Gene expression profiling techniques are well suited to study complex diseases including asthma. In this study, differentially expressed genes (DEGs) followed by weighted gene co-expression network analysis (WGCNA) and machine learning techniques using dataset generated from airway epithelial cells (AECs) and nasal epithelial cells (NECs) were used to identify candidate genes and pathways and to develop asthma classification and predictive models. The models were validated using bronchial epithelial cells (BECs), airway smooth muscle (ASM) and whole blood (WB) datasets. DEG and WGCNA followed by least absolute shrinkage and selection operator (LASSO) method identified 30 and 34 gene signatures and these gene signatures with support vector machine (SVM) discriminated asthmatic subjects from controls in AECs (Area under the curve: AUC = 1) and NECs (AUC = 1), respectively. We further validated AECs derived gene-signature in BECs (AUC = 0.72), ASM (AUC = 0.74) and WB (AUC = 0.66). Similarly, NECs derived gene-signature were validated in BECs (AUC = 0.75), ASM (AUC = 0.82) and WB (AUC = 0.69). Both AECs and NECs based gene-signatures showed a strong diagnostic performance with high sensitivity and specificity. Functional annotation of gene-signatures from AECs and NECs were enriched in pathways associated with IL-13, PI3K/AKT and apoptosis signaling. Several asthma related genes were prioritized including SERPINB2 and CTSC genes, which showed functional relevance in multiple tissue/cell types and related to asthma pathogenesis. Taken together, epithelium gene signature-based model could serve as robust surrogate model for hard-to-get tissues including BECs to improve the molecular etiology of asthma.