Abstract. Osteoarthritis (OA) is a common age-related degenerative joint disease, which is caused by the breakdown of joint cartilage and the underlying bone. Carboxymethyl (CM)-chitosan is a soluble derivative of chitosan that has similar physicochemical properties to the extracellular proteoglycans identified in hyaline cartilage. Previous studies have demonstrated that CM-chitosan serves a protective role in a rabbit OA model. The aim of the present study was to investigate the effect of CM-chitosan on NO production and inflammation through its upregulation of interleukin (IL)-10, and the activation of the janus kinase (JAK)/signal transducer and activator of transcription (STAT)/suppressor of cytokine signaling (SOCS) signaling pathway. In the present study primary rat chondrocytes were induced to inflammation with 2 µg/ml lipopolysaccharide. The cells were subsequently subjected to increasing concentrations of CM-chitosan (50, 100 and 200 µg/ml) and the relative mRNA and protein expression of inducible nitric oxide synthase (iNOS), IL-10, JAK1, STAT3 and SOCS3 were measured by RT-qPCR and western blot analysis respectively. The results revealed that CM-chitosan attenuated inflammation by significantly reducing iNOS expression and upregulating the anti-inflammatory cytokine IL-10 in a dose-dependent manner (P<0.05). The expression of JAK1, STAT3 and SOCS3 were also significantly upregulated by CM-chitosan (all P<0.05).