Lipids, which are essential constituents of biological membranes, play structural and functional roles in the cell. In recent years, certain lipids have been identified as regulatory signaling molecules and have been termed "bioactive lipids". Subsequently, the importance of bioactive lipids in stem cell differentiation and cardiogenesis has gained increasing recognition. Therefore, the aim of this study was to identify the biological processes underlying murine cardiac differentiation and the mechanisms by which bioactive lipids affect these processes. For this purpose, a transcriptomic meta-analysis of microarray and RNA-seq data from murine stem cells undergoing cardiogenic differentiation was performed. The differentially expressed genes identified via this meta-analysis, as well as bioactive lipids, were evaluated using systems chemo-biology tools. These data indicated that bioactive lipids are associated with the regulation of cell motility, cell adhesion, cytoskeletal rearrangement, and gene expression. Moreover, bioactive lipids integrate the signaling pathways involved in cell migration, the secretion and remodeling of extracellular matrix components, and the establishment of the cardiac phenotype. In conclusion, this study provides new insights into the contribution of bioactive lipids to the induction of cellular responses to various stimuli, which may originate from the extracellular environment and morphogens, and the manner in which this contribution directly affects murine heart morphogenesis.