2012
DOI: 10.4018/jcini.2012040103
|View full text |Cite
|
Sign up to set email alerts
|

Image Compression Based on Generalized Principal Components Analysis and Simulated Annealing

Abstract: The authors propose a new data dimensionality reduction method that is formulated as an optimization problem solved in two stages. In the first stage, Generalized Principal Component Analysis (GPCA) is used to find a solution with local maximum (local solution) whereas the algorithm Simulated Annealing (SA) is performed, in the second stage, to converge the local solution to the optimal solution. The performance of GPCA and GPCA with Simulated Annealing (GPCA-SA) as images compressors was evaluated in terms of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2017
2017
2017
2017

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
(47 reference statements)
0
0
0
Order By: Relevance