2022 International Conference on Image Processing and Media Computing (ICIPMC) 2022
DOI: 10.1109/icipmc55686.2022.00016
|View full text |Cite
|
Sign up to set email alerts
|

Image Segmentation Model of Pear Leaf Diseases Based on Mask R-CNN

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 10 publications
0
2
0
Order By: Relevance
“…Several researches have focused on combining deep learning algorithms with machine learning algorithms to address and improve the accuracy of the classification problem, for example, MobileNetv2 and NASNetMobile that were used to extract features from leaves and those features were combined with classification networks such as random forest, support vector machines and multinomial logistic regression [51]. Other works have applied algorithms such as YOLOv3 [45], Faster R-CNN [52,53] and Mask R-CNN [54,55] to detect disease states in plants.…”
Section: Related Workmentioning
confidence: 99%
“…Several researches have focused on combining deep learning algorithms with machine learning algorithms to address and improve the accuracy of the classification problem, for example, MobileNetv2 and NASNetMobile that were used to extract features from leaves and those features were combined with classification networks such as random forest, support vector machines and multinomial logistic regression [51]. Other works have applied algorithms such as YOLOv3 [45], Faster R-CNN [52,53] and Mask R-CNN [54,55] to detect disease states in plants.…”
Section: Related Workmentioning
confidence: 99%
“…These frameworks are extremely flexible, well‐supported, and surprisingly approachable. As a result, many recent projects have also coalesced around these two frameworks with great success, including efforts to segment leaves (Younis et al, 2020; Triki et al, 2020, 2021; Guo et al, 2021; Hussein et al, 2021b; Gu et al, 2022; Ott and Lautenschlager, 2022), segment plant tissue (Love et al, 2021; Goëau et al, 2022; Milleville et al, 2023), isolate plant organs (Davis et al, 2020; Pearson et al, 2020; Triki et al, 2020; Ott and Lautenschlager, 2022), extract specimen label data (Milleville et al, 2023), isolate diseased or damaged leaf tissue (Kaur et al, 2022; Mu et al, 2022; Kavitha Lakshmi and Savarimuthu, 2023), measure bird skeletons (Weeks et al, 2023), isolate preserved snakes (Curlis et al, 2022), segment fossils (Panigrahi et al, 2022), or remotely monitor phenology (Mann et al, 2022). However, rather than relying on a single machine learning architecture to extract trait and archival data from specimens, we developed a modular framework of seven different machine learning algorithms that work in tandem to comprehensively process each image (Table 2, Figure 1).…”
Section: Term Definitionmentioning
confidence: 99%