One of the reasons for the implementation of information security threats in organizations is the insider activity of its employees. There is a big challenge to detect stego-insiders-employees who create stego-channels to secretly receive malicious information and transfer confidential information across the organization’s perimeter. Especially presently, with great popularity of wireless sensor networks (WSNs) and Internet of Things (IoT) devices, there is a big variety of information that could be gathered and processed by stego-insiders. Consequently, the problem arises of identifying such intruders and their transmission channels. The paper proposes an approach to solving this problem. The paper provides a review of the related works in terms of insider models and methods of their identification, including techniques for handling insider attacks in WSN, as well methods of embedding and detection of stego-embeddings. This allows singling out the basic features of stego-insiders, which could be determined by their behavior in the network. In the interests of storing these attributes of user behavior, as well as storing such attributes from large-scale WSN, a hybrid NoSQL database is created based on graph and document-oriented approaches. The algorithms for determining each of the features using the NoSQL database are specified. The general scheme of stego-insider detection is also provided. To confirm the efficiency of the approach, an experiment was carried out on a real network. During the experiment, a database of user behavior was collected. Then, user behavior features were retrieved from the database using special SQL queries. The analysis of the results of SQL queries is carried out, and their applicability for determining the attribute is justified. Weak points of the approach and ways to improve them are indicated.