This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by several crash types and demographic groups at the monthly level from 2004 to 2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk-driving crashes among young and adult drivers, among male and female drivers, and among white and black drivers. Results from negative binomial regression models show that when gas prices are higher, there are fewer drunk-driving crashes, particularly among property-damage-only crashes. When alcohol consumption levels are higher, there are more drunk-driving crashes, particularly fatal and injury crashes. The effects of gasoline prices and alcohol consumption are stronger on drunk-driving crashes than on all crashes. The findings do not vary much across different demographic groups. Overall, gasoline prices have greater effects on less severe crashes and alcohol consumption has greater effects on more severe crashes.
The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
Thien-and-Lin's polynomial-based secret image sharing (PSIS) is utilized as the basic method to achieve PSISs with better performances, such as meaningful shares, two-in-one property and shares with different priorities. However, this (k, n) threshold PSIS cannot achieve lossless recovery for pixel values more than 250. Furthermore, current solutions to lossless recovery for PSIS have several natural drawbacks, such as large computational costs and random pixel expansion. In this paper, a lossless and efficient (k, n) threshold PSIS scheme with reduced shadow size is presented. For lossless recovery and efficiency, two adjacent pixels are specified as a secret value, the prime in the sharing polynomial is replaced with 65,537, and then the additional screening operation can ensure each shared value in the range [0, 65,535]. To reduce shadows size and improve security, only the first k − 1 coefficients are embedded with secret values and the last coefficient is assigned randomly. To prevent the leakage of secrets, generalized Arnold permutation with special key generating strategy is performed on the secret image prior to sharing process without key distribution. Both theoretical analyses and experiments are conducted to demonstrate the effectiveness of the proposed scheme.
Steganalysis is a method to detect whether the objects contain secret messages. With the popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have become the chief method of combating steganography in recent years. However, the diversity of filters has not been fully utilized in the current research. This paper constructs a new effective network with diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture the embedding artifacts. As the essential parts, combining three different scale convolution filters, DFMs can process information diversely, and the SEMs can enhance the effective channels out from DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-of-the-art methods are compared with our approach to demonstrate the outstanding performance.
Secret image sharing (SIS) with small-sized shadow images has many benefits, such as saving storage space, improving transmission time, and achieving information hiding. When adjacent pixel values in an image are similar to each other, the secret image will be leaked when all random factors of an SIS scheme are utilized for achieving small sizes of shadow images. Most of the studies in this area suffer from an inevitable problem: auxiliary encryption is crucial in ensuring the security of those schemes. In this paper, an SIS scheme with small-sized shadow images based on the Chinese remainder theorem (CRT) is proposed. The size of shadow images can be reduced to nearly 1 / k of the original secret image. By adding random bits to binary representations of the random factors in the CRT, auxiliary encryption is not necessary for this scheme. Additionally, reasonable modifications of the random factors make it possible to incorporate all advantages of the CRT as well, including a ( k , n ) threshold, lossless recovery, and low computation complexity. Analyses and experiments are provided to demonstrate the effectiveness of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.