A homemade spectral shift fluorescence microscope (SSFM) is coupled with a spectrometer to record the spectral images of specimens based on the emission wavelength. Here a reliable diagnosis of neoplasia is achieved according to the spectral fluorescence properties of ex-vivo skin tissues after Rd6G staining. It is shown that certain spectral shifts occur for nonmelanoma/melanoma lesions against normal/benign nevus, leading to spectral micrographs. In fact, there is a strong correlation between the emission wavelength and the sort of skin lesions, mainly due to the Rd6G interaction with the mitochondria of cancerous cells. The normal tissues generally enjoy a significant red shift regarding laser line. Conversely, plenty of fluorophores are conjugated to unhealthy cells giving rise to a relative blue shift against normal tissues or a smaller redshift with respect to the excitation wavelength. Consequently, three data sets are available in the form of micrographs, addressing pixel by pixel signal intensity, emission wavelength, and fluorophore concentration of specimens for prompt diagnosis.