Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is employed to detect tiny amounts of mass ablated from macroscopic specimens and to measure chemical images of microstructured samples with high spatial resolution. Frequency-doubled fs-pulses (length 400 fs, wavelength 520 nm) are tightly focused with a Schwarzschild microscope objective to ablate the sample surface. The optical emission of laser-induced plasma (LIP) is collected by the objective and measured with an echelle spectrometer equipped with an intensified charge-coupled device camera. A second fs-laser pulse (1040 nm) in orthogonal beam arrangement is reheating the LIP. The optimization of the experimental setup and measurement parameters enables us to record single-pulse fs-LIBS spectra of 5 nm thin metal layers with an ablated mass per pulse of 100 femtogram (fg) for Cu and 370 fg for Ag films. The orthogonal double-pulse fs-LIBS enhances the recorded emission line intensities (two to three times) and improves the contrast of chemical images in comparison to single-pulse measurements. The size of ablation craters (diameters as small as 1.5 µm) is not increased by the second laser pulse. The combination of minimally invasive sampling by a tightly focused low-energy fs-pulse and of strong enhancement of plasma emission by an orthogonal high-energy fs-pulse appears promising for future LIBS chemical imaging with high spatial resolution and with high spectrochemical sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.