Transmission-based muography (TM) is an innovative imaging technique based on the measurement and analysis of the cosmic ray muons flux attenuation within the target under investigation. This technique allows imaging inner-body density differences and has successfully been applied in a wide range of research fields: geology, archaeology, engineering geology and civil engineering. The aim of this study is to show the reliability of TM as an innovative, noninvasive geophysical method for ore body prospecting and other mining related studies. The measurements were carried out at the Temperino mine in the San Silvestro Archaeological and Mining Park (Campiglia Marittima, Italy), where several magmatic and metasomatic geological units are embodied. Among them, a Cu–Fe–Zn–Pb(–Ag) sulfide skarn complex primarily composed by hedenbergite and ilvaite minerals. Using the acquired muon imaging data obtained with the MIMA (Muon Imaging for Mining and Archaeology) detector prototype (cubic detector of 0.5 × 0.5 × 0.5 m3), the presence of a high-density vein inside the skarn body within the rock volume above the muon detector was identified, localized and interpreted. Applying a back-projection algorithm to the obtained 2D transmission map made it possible to estimate and visualize as point cloud data, in a 2D or 3D environment, the identified high-density body and its relative distance from the detector. The results of this study highlight the potential of muography as a support tool to other geophysical methods in the field of mining exploration.