A lipase derived from an indigenous extremophile Pseudomonas aeruginosa strain isolated from rancid metalworking fluid was evaluated as a detergent additive. Applicability of the obtained enzyme as an additive in detergent formulations was confirmed by its implementation in the formulations of several new products differing in surfactant type and concentrations, demonstrating satisfactory performance in terms of degreasing efficiency and composition of the washing wastewater. The degreasing efficiency of different enzyme-containing detergent formulations was studied on cotton fabric samples stained with triolein and compared to that of formulations containing only surfactant. The highest efficiency of the fatty soil removal in formulations with a low content of surfactants (0.4 %) was noted in the enzyme formulation containing Lutensol Ò XP-80 (degreasing efficiency [80 %) and Triton Ò X-100 (degreasing efficiency [60 %). An attempt was then made to optimize the composition of the enzyme formulation on the basis of one or both of these surfactants using statistically planned experiments and response surface methodology (RSM). Taking into consideration the environmental aspects and the shown detergency, it appeared that rather high degreasing effects were achieved in formulations based on a low quantities of Lutensol Ò XP-80 (0.4 %) at all pH values. However, pH seemed to have a notable effect since the degreasing efficiency significantly increased with increasing pH and the amount of the enzyme. Formulations having a moderate alkaline pH profile and higher amount of enzyme exhibited a high cleaning performance of fatty soil even at a low concentration of the surfactant.