The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young’s modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.