The essential use of natural language processing is to analyze the sentiment of the author via the context. This sentiment analysis (SA) is said to determine the exactness of the underlying emotion in the context. It has been used in several subject areas such as stock market prediction, social media data on product reviews, psychology, judiciary, forecasting, disease prediction, agriculture, etc. Many researchers have worked on these areas and have produced significant results. These outcomes are beneficial in their respective fields, as they help to understand the overall summary in a short time. Furthermore, SA helps in understanding actual feedback shared across different platforms such as Amazon, TripAdvisor, etc. The main objective of this thorough survey was to analyze some of the essential studies done so far and to provide an overview of SA models in the area of emotion AI-driven SA. In addition, this paper offers a review of ontology-based SA and lexicon-based SA along with machine learning models that are used to analyze the sentiment of the given context. Furthermore, this work also discusses different neural network-based approaches for analyzing sentiment. Finally, these different approaches were also analyzed with sample data collected from Twitter. Among the four approaches considered in each domain, the aspect-based ontology method produced 83% accuracy among the ontology-based SAs, the term frequency approach produced 85% accuracy in the lexicon-based analysis, and the support vector machine-based approach achieved 90% accuracy among the other machine learning-based approaches.