Mannose-functionalized magnetic nanoparticles were prepared for the immobilization of Escherichia coli cells harboring the recombinant glycerol dehydrogenase gene. Immobilization of whole E. coli cells on the carrier was carried out through specific binding between mannose on the nanoparticles and the FimH lectin on the E. coli cell surface via hydrogen bonds and hydrophobic interactions. The effects of various factors including cell concentration, pH, temperature, and buffer concentration were investigated. High degrees of immobilization (84%) and recovery of activity (82%) were obtained under the following conditions: cell/support 1.3 mg/mL, immobilization time 2 h, pH 8.0, temperature 4°C, and buffer concentration 50 mM. Compared with the free cells, the thermostability of the immobilized cells was improved 2.56-fold at 37 °C. More than 50% of the initial activity of the immobilized cells remained after 10 cycles. The immobilized cells were evaluated functionally by monitoring the catalytic conversion of glycerol to 1,3-dihydroxyacetone (DHA). After a 12 h reaction, the DHA produced by the immobilized cells was two-fold higher than that produced by the free cells. These results indicate that mannose-functionalized magnetic nanoparticles can be used for the specific recognition of gram-negative bacteria, which gives them great potential in applications such as the preparation of biocatalysts and biosensors and clinical diagnosis.