Introduction. Nowadays there is very relevant research on the study of the characteristics of the impact on the health of workers of low levels of harmful factors (acrylonitrile) of production during long-term exposure. Aim of the study was to examine peculiarities of immunologic and genetic indices in workers under the long-term exposure to acrylonitrile in low doses. Materials and methods. Our research object was working area air (MPCw.ar.=0.5 mg/m3) and biological media (blood and exhaled air) of workers employed at industrial rubber manufacture. Acrylonitrile was determined via a non-invasive procedure in exhaled air with samples being concentrated on sorption tubes that were then analyzed with capillary gas chromatography. Blood samples were examined to determine contents of malonic dialdehyde, lymphocytes (absolute and relative activated T-lymphocytes CD3+CD25+, absolute and relative activated T-lymphocytes CD3+CD95+), cytokines (VEGF), oncomarkers (PSA), and adrenals hormones; to do that, we applied ELISA tests and flow cytometry. Results. Acrylonitrile was established to occur in working area air in concentrations varying within MPCw.ar. range (0.007-0.015 mg/m3) being 2-3 times higher than in air inside offices at the same enterprise. We obtained statistically significant linear dependence between concentrations of acrylonitrile in the air exhaled by workers (y) and their working experience (x) that was given with the following equation: y=0.00046+0.00027x. According to the results of the laboratory examination of the workers, violations of the antioxidant defense were established. Contents of malonic dialdehyde and steroid hormones including progesterone, estradiol, and hydrocortisone that were pathogenetically linked to each other were authentically up to 3.2 times higher in the test group than in the reference one (p<0.05). Risk for antioxidant protection disorders such as elevated malonic dialdehyde contents in blood plasma might occur in the test group was 1.58 times higher than in the reference one. Conclusion. We revealed certain peculiarities in polymorphism of PPARGC1A Gly482Ser rs8192678 gene, the variability of which contributes to the formation of pathology of the cardiovascular, endocrine systems, oncoproliferative states that increase the likelihood of these undesirable events.