2014
DOI: 10.1371/journal.pone.0108268
|View full text |Cite
|
Sign up to set email alerts
|

Immune Profile Predicts Survival and Reflects Senescence in a Small, Long-Lived Mammal, the Greater Sac-Winged Bat (Saccopteryx bilineata)

Abstract: The immune system imposes costs that may have to be traded against investment of resources in other costly life-history traits. Yet, it is unknown if a trade-off between immunity and longevity occurs in free-ranging mammals. Here, we tested if age and survival, two aspects associated with longevity, are linked to immune parameters in an 8 g bat species. Using a combination of cross-sectional and longitudinal data, we assessed whether total white blood cell (WBC) counts, bacterial killing ability of the plasma … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
52
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 42 publications
(53 citation statements)
references
References 68 publications
0
52
1
Order By: Relevance
“…Depicted are phylogenetic relatedness on the left, scientific names for all species included (blue = data collected in wild population, red = data collected in captive population), and for each species the number of effects in each main component of the immune system and the relevant references. References: 1: (Lindsay et al ); 2: (Beirne et al ); 3: (Mazzaro et al ); 4: (Mellish et al ); 5: (Schneeberger et al ); 6: (Cheynel et al ); 7: (Graham et al ); 8: (Nussey et al ); 9: (Watson et al ); 10: (Grandoni et al ); 11: (Ezenwa & Jolles ); 12: (Ahmad et al ); 13: (Abolins et al ); 14: (Nehete et al ); 15: (Nehete et al ); 16: {Castro:2015hz}; 17: (Cicin‐Sain et al ); 18: (Čičin‐Šain et al ); 19: (Coe & Ershler ); 20: (Coe et al ); 21: (Ershler et al ): 22: (Higashino et al ): 23: (Eichberg et al ); 24: (Jayashankar et al ); 25: (Setchell et al ); 26: (Chakrabarti et al ); 27: (Sharma et al ); 28: (Massot et al ); 29: (Richard et al ); 30: (Madsen et al ); 31: (Ujvari & Madsen ); 32: (Ujvari & Madsen ); 33: (Sparkman & Palacios ); 34: (Zimmerman et al ); 35: (Zimmerman et al ); 36: (Zimmerman et al ); 37: (Groffen et al ); 38: (Lavoie et al ); 39: (Alonso‐Alvarez et al ); 40: (Hill et al ); 41: (Counihan & Hollmén ); 42: (Neggazi et al ); 43: (Terrón et al ); 44: (Apanius & Nisbet ); 45: (Lozano & Lank ); 46: (Lozano & Lank ); 47: (Nebel et al ); 48: (Torres & Velando ); 49: (Haussmann et al ); 50: (Lecomte et al ); 51: (Catry et al ); 52: (Wilcoxen et al ); 53: (Vermeulen et al ); 54: (Møller & Haussy ); 55: (Saino et al ); 56: (Palacios ...…”
Section: Methodsmentioning
confidence: 99%
“…Depicted are phylogenetic relatedness on the left, scientific names for all species included (blue = data collected in wild population, red = data collected in captive population), and for each species the number of effects in each main component of the immune system and the relevant references. References: 1: (Lindsay et al ); 2: (Beirne et al ); 3: (Mazzaro et al ); 4: (Mellish et al ); 5: (Schneeberger et al ); 6: (Cheynel et al ); 7: (Graham et al ); 8: (Nussey et al ); 9: (Watson et al ); 10: (Grandoni et al ); 11: (Ezenwa & Jolles ); 12: (Ahmad et al ); 13: (Abolins et al ); 14: (Nehete et al ); 15: (Nehete et al ); 16: {Castro:2015hz}; 17: (Cicin‐Sain et al ); 18: (Čičin‐Šain et al ); 19: (Coe & Ershler ); 20: (Coe et al ); 21: (Ershler et al ): 22: (Higashino et al ): 23: (Eichberg et al ); 24: (Jayashankar et al ); 25: (Setchell et al ); 26: (Chakrabarti et al ); 27: (Sharma et al ); 28: (Massot et al ); 29: (Richard et al ); 30: (Madsen et al ); 31: (Ujvari & Madsen ); 32: (Ujvari & Madsen ); 33: (Sparkman & Palacios ); 34: (Zimmerman et al ); 35: (Zimmerman et al ); 36: (Zimmerman et al ); 37: (Groffen et al ); 38: (Lavoie et al ); 39: (Alonso‐Alvarez et al ); 40: (Hill et al ); 41: (Counihan & Hollmén ); 42: (Neggazi et al ); 43: (Terrón et al ); 44: (Apanius & Nisbet ); 45: (Lozano & Lank ); 46: (Lozano & Lank ); 47: (Nebel et al ); 48: (Torres & Velando ); 49: (Haussmann et al ); 50: (Lecomte et al ); 51: (Catry et al ); 52: (Wilcoxen et al ); 53: (Vermeulen et al ); 54: (Møller & Haussy ); 55: (Saino et al ); 56: (Palacios ...…”
Section: Methodsmentioning
confidence: 99%
“…). Similarly, previous studies interpreted increased IgG concentration as a sign of chronic infection or accumulation of repeated pathogen exposure (Brock et al., ; Schneeberger et al., ). Although extreme malnutrition may hinder production of IgG (Frouin, Haulena, Akhurst, Raverty, & Ross, ; Glick, Day, & Thompson, ), this is less likely to apply in our study, as overall cats showed similarly moderate body condition regardless of the CCA intensity.…”
Section: Discussionmentioning
confidence: 74%
“…Similar energetic trade‐offs among different immune components have been discussed and observed in previous studies (Martin, Weil, Kuhlman, & Nelson, ; Pigeon, Bélisle, Garant, Cohen, & Pelletier, ). For instance, in a study of different bat colonies, bats in areas potentially exposed to fungi and parasites in higher rate, hence requiring stronger memory‐related resistance, showed higher T‐cell‐mediated immune responses while their bactericidal ability was lower, showing negative correlation between the two immune parameters (Allen et al., ; Brock et al., ; Schneeberger et al., ).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…The immune system involves multiple mechanisms that protect the host against pathogens [1]. The 33 functioning of the immune system is related to sex [2,3] and changes throughout life [4][5][6][7][8][9]. Since age-34 related changes in immune responses have been linked to mortality in the wild [9], understanding the 35 factors driving differences in immune responses can provide insight into the evolution of immunity 36 and senescence.…”
Section: Introduction 32mentioning
confidence: 99%