We examined the way the major outer membrane protein OmpA of Salmonella enterica serovar Typhimurium is recognized by the mouse immune system, by raising a panel of 12 monoclonal antibodies (MAbs) against this protein. Interaction between OmpA and these MAbs is competitively inhibited with several-hundredfold dilutions of mouse polyclonal sera obtained by immunization with live or heat-killed whole cells, suggesting that OmpA is one of the immunodominant antigens of serovar Typhimurium. All of the MAbs were specific for an identical epitope(s) located on the C-terminal domain of OmpA, as indicated by the use of OmpA fragments generated by protease or cyanogen bromide treatment and by competitive inhibition enzyme-linked immunosorbent assay. This epitope was highly conserved within (but not outside) the family Enterobacteriaceae. The strong immunogenicity of this epitope was surprising because the C-terminal domain of OmpA, usually thought to be located in the periplasm, is not expected to be exposed on the bacterial cell surface. A MAb, however, reacted in a cytofluorometry assay more strongly with outer-membrane-permeabilized cells than with untreated cells, a result supporting the predominantly periplasmic localization of the epitope. Significant, though low-level, reactivity of intact cells nevertheless suggests that in some cells the C-terminal domain of OmpA is exposed on the surface, a result consistent with the proposal that OmpA can fold into one of the two alternate conformations.