S U M M A R YThe action of androgens on the immunocytochemical distribution of mK1, a true tissue kallikrein, was examined in the submandibular gland (SMG) of developing and adult mice by indirect enzyme-labeled and immunogold-labeled antibody methods for light and electron microscopy, respectively. In both sexes at 3 weeks of age, essentially all of the immature granular convoluted tubule (GCT) cells were uniformly immunostained. At 4 weeks of age (the onset of puberty), morphological differences between the two sexes appeared in the GCTs, in which some cells became immunonegative. Thereafter, the immunonegative GCT cells became more abundant in the SMG of males than of females and considerable intercellular variation in staining intensity for mK1 was seen, especially in males. A few slender GCT cells with strong immunoreactivity appeared in GCT segments only in males. Castration of males resulted in an increase in the number of immunopositive GCT cells, whereas administration of dihydrotestosterone (DHT) decreased the number of immunopositive GCT cells in the SMGs of both sexes. Slender GCT cells immunoreactive for mK1 were seen in females treated with DHT for 6 days. However, there were no immunostained slender GCT cells in female SMGs after injection of DHT for 2 weeks. Immunoelectron microscopy disclosed this type of cell in male SMGs, which closely resembles immature GCT cells of prepubertal mice, with a few small secretory granules uniformly labeled with gold particles, a sparse Golgi apparatus and RER, and basal infoldings. In mature male SMGs and in SMGs of DHT-treated females and castrated males, typical GCT cells had a well-developed Golgi apparatus and a net-like RER but few to no basal infoldings, whereas in the female gland equivalent cells had moderately developed RER and some basal infoldings. These results suggest that mK1 is one of the enzymes characteristically present in immature GCT cells and that its synthesis is inhibited in part by androgens, resulting in decreased numbers of immunopositive cells.