A polyclonal antibody has been raised against ferulic acid ester linked to arabinoxylans (AX). 5-O-feruloyl-alpha-L-arabinofuranosyl(1-->4)-beta-D-xylopyranosyl was obtained by chemical synthesis, and was coupled to bovine serum albumin for the immunization of rabbit. The polyclonal antibody designated 5-O-Fer-Ara was highly specific for 5-O-(trans-feruloyl)-L-arabinose (5-O-Fer-Ara) structure that is a structural feature of cell wall AX of plants belonging to the family of Gramineae. The antibody has been used to study the location and deposition of feruloylated AX in walls of aleurone and starchy endosperm of wheat grain. 5-O-Fer-Ara began to accumulate early in aleurone cell wall development (beginning of grain filling, 13 days after anthesis, DAA) and continued to accumulate until the aleurone cells were firmly fixed between the starchy endosperm and the nucelus epidermis (19 DAA). From 26 DAA to maturity, the aleurone cell walls changed little in appearance. The concentration of 5-O-Fer-Ara is high in both peri- and anticlinal aleurone cell walls with the highest accumulation of 5-O-Fer-Ara at the cell junctions at the seed coat interface. The situation is quite different in the starchy endosperm: whatever the stage of development, a low amount of 5-O-Fer-Ara epitope was detected. Contrary to what was observed for aleurone cell walls, no peak of accumulation of feruloylated AX was noticed between 13 and 19 DAA. Visualization of labelled Golgi vesicles suggested that the feruloylation of AX is intracellular. The distribution of (5-O-Fer-Ara) epitope is further discussed in relation to the role of ferulic acid and its dehydrodimers in cell wall structure and tissue organization of wheat grain.