The cellulose-enriched tertiary cell walls present in many plant fibers have specific composition, architecture, machinery of formation, and function. To better understand the mechanisms underlying their mode of action and to reveal the peculiarities of fibers from different plant species, it is necessary to more deeply characterize the major components. Next to overwhelming cellulose, rhamnogalacturonan I (RG-I) is considered to be the key polymer of the tertiary cell wall; however, it has been isolated and biochemically characterized in very few plant species. Here, we add RG-I to the list from the phloem fibers of the Phaseolus vulgaris stem that was isolated and analyzed by nuclear magnetic resonance (NMR), dynamic light scattering, and immunolabeling, both within tissue and as an isolated polymer. Additionally, fibers with tertiary cell walls from nine species of dicotyledonous plants from the orders Malphigiales, Fabales, and Rosales were labeled with RG-I-related antibodies to check the presence of the polymer and compare the in situ presentation of its backbone and side chains. The obtained results confirm that RG-I is an obligatory polymer of the tertiary cell wall. However, there are differences in the structure of this polymer from various plant sources, and these peculiarities may be taxonomically related.