Rat trigeminal ganglion neurons have been shown to contain a splice variant of choline acetyltransferase (pChAT). Here we report the distribution pattern of pChAT-containing afferents from the trigeminal ganglion to the brainstem, compared with that of calcitonin gene-related peptide (CGRP) and substance P (SP), by use of the immunohistochemical techniques in the rat. Most of CGRP(+) SP(+) ganglion cells contain pChAT, whereas half of the pChAT(+) ganglion cells possess neither CGRP nor SP. In the brainstem, pChAT(+) nerve fibers are found exclusively in the trigeminal and solitary systems, although the distribution pattern differs from that of CGRP(+) or SP(+) fibers. First, the ventral portion of the principal sensory nucleus contains many pChAT(+) fibers, with few CGRP(+) or SP(+) fibers. Because this portion receives projections of nociceptive corneal afferents, a subpopulation of pChAT(+) CGRP(-) SP(-) primary afferents is most probably nonpeptidergic nociceptors innervating the cornea. Second, the superficial laminae of the medullary dorsal horn, the main target of nociceptive afferents, contain dense CGRP(+) and SP(+) fibers but sparse pChAT(+) fibers. Because pChAT occurs in most CGRP(+) SP(+) ganglion cells, such sparseness of pChAT(+) fibers implies poor transportation of pChAT to axon branchlets. Another important finding is that pChAT(+) axons are smooth and nonvaricose, whereas CGRP(+) or SP(+) fibers possess numerous varicosities. Our confocal microscopy suggests colocalization of these three markers in the same single axons in some brainstem regions. The difference in morphological appearance, nonvaricose or varicose, appears to reflect the difference in intraaxonal distribution between pChAT and CGRP or SP.