Objective
To explore the immune status and chronic inflammation of breast cancer patients, this study aims to analyze the diagnostic value of peripheral blood lymphocyte subsets (CD3+T, CD4+T, CD8+T, CD3+CD4−CD8−T, CD19+B, and NK cells) and lymphocyte-to-monocyte ratio (LMR) for breast cancer. Furthermore, it seeks to examine the correlation between these subsets and LMR with clinicopathological features.
Methods
A total of 100 breast cancer patients were selected as the experimental group, while 55 patients with benign breast diseases were included in the control group. Statistical analysis, including the Wilcoxon test, Kruskal–Wallis test and the receiver operating characteristic curve, was employed to investigate the association between these serum indexes and the clinicopathological characteristics of the patients.
Results
The levels of CD3+T cells, CD4+T cells, CD8+T cells, CD4+/CD8+ ratio, NK cells, CD3+CD4−CD8−T cells, and LMR were found to be related to the occurrence of breast cancer when analyzing data from patients with benign and malignant breast diseases. Among these biomarkers, CD3+T cells, CD4+T cells, CD4+/CD8+ ratio, CD3+CD4−CD8−T cells, and LMR were identified as independent risk factors for breast cancer development, and the AUCs were 0.760, 0.750, 0.598, 0.697, and 0.761 (P < 0.05), respectively. Furthermore, we observed varying degrees of differences in the expression of CD3+T cells, CD4+T cells, CD8+T cells, CD4+/CD8+ ratio, and LMR in lymph node metastasis, clinical staging, molecular typing, Ki-67 level (P < 0.05). However, statistical differences in histologic grade and pathology type were not found (P ≥ 0.05).
Conclusion
Lymphocyte subsets and LMR reflect the immune status and chronic inflammation of the body, respectively. They have certain value in the diagnosis of benign and malignant breast diseases, and correlate with lymph node metastasis, clinical staging, molecular typing and other clinicopathological features of breast cancer. Therefore, monitoring the expression of lymphocyte subsets and LMR in the body may help the auxiliary diagnosis and condition analysis of breast cancer in the clinic.