Background During the process of deep decay, when decay approaches the pulp, an immune response is triggered inside the pulp, which activates the complement cascade. The effect of complement component 5a (C5a) on the differentiation of dental pulp mesenchymal stem cells (DPSCs) is related to dentin reparation. The aim of the present study was to stimulate DPSCs with different concentrations of C5a and evaluate the differentiation of odontoblasts using dentin sialoprotein (DSP). Methods DPSCs were divided into the following six groups: i) Control; ii) DPSCs treated with 50 ng/ml C5a; iii) DPSCs treated with 100 ng/ml C5a; iv) DPSCs treated with 200 ng/ml C5a; v) DPSCs treated with 300 ng/ml C5a; and vi) DPSCs treated with 400 ng/ml C5a. Flow cytometry and multilineage differentiation potential were used to identify DPSCs. Mineralization induction, Real-time PCR and Western blot were conducted to evaluate the differentiation of odontoblast in the 6 groups.Result DPSCs can express mesenchymal stem cell markers, including CD105, CD90, CD73 and, a less common marker, mesenchymal stromal cell antigen-1. In addition, DPSCs can differentiate into adipocytes, neurocytes and osteoblasts. All six groups formed mineralized nodules after 28 days of culture. Reverse transcription-quantitative PCR and western blotting indicated that the high concentration C5a groups expressed higher DSP levels and promoted DPSC differentiation, whereas the low concentration C5a groups displayed an inhibitory effect.Conclusion In this study, the increasing concentration of C5a, which accompanies the immune process in the dental pulp, has demonstrated an enhancing effect on odontoblast differentiation at higher C5a concentrations in vitro.