We conduct a bifurcation analysis of a single-junction superconducting quantum interferometer with an external flux. We approximate the current-voltage characteristics of the conductance in the equivalent circuit of the JJ by using two types of functions: a linear function and a piecewise linear (PWL) function. We describe a method to compute the local stability of the solution orbit and to solve the bifurcation problem. As a result, we reveal the bifurcation structure of the systems in a two-dimensional parameter plane. By making a comparison between the linear and PWL cases, we find a difference in the shapes of their bifurcation sets in the two-dimensional parameter plane even though there are no differences in the one-dimensional bifurcation diagrams or the trajectories. As for the influence of piecewise linearization, we discovered that grazing bifurcations terminate the calculation of the local bifurcations, because they drastically change the stability of the periodic orbit.