Spectrometers based on acousto-optic tunable filters (AOTFs) have several advantages, such as stable temperature adaptability, no moving parts, and wavelength selection through electrical modulation, compared with the traditional grating and Fourier transform spectrometers. Therefore, AOTF spectrometers can realize stable in situ measurement on the lunar surface under wide temperature ranges and low light environments. AOTF imaging spectrometers were first employed for in situ measurement of the lunar surface in the Chinese Chang’e project. The visible and near-infrared imaging spectrometer and the lunar mineralogical spectrometer have been successfully deployed on board the Chang’e-3/4 and Chang’e-5 missions. In this review, we investigate the performance indicators, structural design, selected AOTF performance parameters, data acquisition of the three lunar in situ spectral instruments used in the Chang’e missions. In addition, we also show the scientific achievement of lunar technology based on in situ spectral data.