While text-based medical applications have become increasingly prominent, access to clinical data remains a major concern. To resolve this issue, further de-identification and anonymization of the data are required. This might, however, alter the contextual information within the clinical texts and therefore influence the learning and performance of possible language models. This paper systematically analyses the potential effects of various anonymization techniques on the performance of state-of-theart machine learning models based on several datasets corresponding to five different NLP tasks. On this basis, we derive insightful findings and recommendations concerning text anonymization with regard to the performance of machine learning models. In addition, we present a simple re-identification attack applied to the anonymized text data, which can break the anonymization.