This study addresses the concept of smart governance in the context of smart cities, with a focus on analyzing the phenomenon of smart collaboration. Relying on the existing collaboration and participation concepts in the smart city domain, an empirical analysis was undertaken of how ICT can promote collaborative governance and increase the participation and engagement in government. The multiple case studies focus on three cities in Brazil that run municipal operations centers in an effort to "become smarter": Rio de Janeiro, Porto Alegre, and Belo Horizonte. Interviews with directors, managers, and technicians shed light on the contribution that ICT makes in promoting an environment of collaboration in the government. The findings have revealed that ICT has an important role in supporting information sharing and integration between government agencies and external stakeholders, including citizens, especially in developing countries.
Accurate information on urban building types plays a crucial role for urban development, planning, and management. In this paper, we apply Object-Based Image Analysis (OBIA) methods to extract buildings from Airborne Laser Scanner (ALS) data and investigate the possibility of classifying detected buildings into -Residential/Small Buildings‖, -Apartment Buildings‖, and -Industrial and Factory Building‖ classes by means of domain ontology and machine learning techniques. The buildings objects are classified using exclusively the information computed from the ALS data. To select the relevant features for predicting the classes of interest, the Random Forest classifier has been applied. The ontology-based classification yielded convincing results for the -Residential/Small Buildings‖ class (F-Measure 97.7%), whereas the -Apartment Buildings‖ and -Industrial and Factory Buildings‖ classes achieved less accurate results (F-Measure 60% and 51%, respectively).
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.