Electric vehicles (EVs) are rapidly growing in popularity, but range variability has become an important research area with significant implications for EV performance, usability, and overall market adoption. This study aims to unravel the complexities of range variability by examining the contributing factors and offering innovative strategies to mitigate these differences during pack design. Through a detailed analysis of cell parameter deviation, cell connections, battery configuration, battery pack size, and driving behavior, the research illuminates their impact on extractable energy and driving range. The study employed a comprehensive approach and conducted systematic simulation-based experimentation to identify the optimal battery pack configuration based on maximum extractable energy, minimal variability and maximum range. The results reveal insights into the relationship between discharge rate and battery pack performance, and the impact of cell parameter variations on pack energy output. This research advances the understanding of EV performance optimisation, reduces pack-to-pack variability, and extends battery pack lifespan.