Employing experimental kinetics data collected in this study, a power law rate equation for the thermal degradation of 2-amino-2-methyl-1-propanol (AMP) to 4,4-dimethyl-1,3-oxazolidin-2-one (DMOZD) as a function of amine and CO 2 concentration in the solution is introduced. The rate experiments were carried out at 120, 135, and 150 °C. Kinetic data was collected to extract the initial rate equation from aqueous solutions of 1.12, 1.68, 2.24, and 3.36 M, AMP and CO 2 loadings from 0.17 to 0.7, mol CO2 / mol AMP . Since the rate equation is based on the initial reactions in the solution, the output from the kinetic model can be used to estimate the thermal degradation rate of AMP as a whole and DMOZD formation rate at the onset of the reaction, as this cyclic compound can be considered as the primary initial thermal degradation product. The power with respect to AMP and CO 2 concentration in the kinetic model, and activation energy and pre-exponential factor, were calculated and introduced in this work. AMP degradation to the cyclic DMOZD shows close comparability to monoethanolamine (MEA), where the primary initial product is oxazolidin-2-one (OZD), with less tendency in terms of the reaction frequency. In general, AMP thermal degradation to DMOZD displays a lower reaction rate constant compared to MEA. Considering the reaction rate orders of 0.45 (±0.25) and 1.18 (±0.15) for the CO 2 and AMP concentrations in the solution respectively, the DMOZD formation rate displayed more dependency to AMP concentration and less dependency toward CO 2 .