This paper evaluates the energy consumption of well-known routing protocols, along with other metrics such as throughput, packet delivery ratio (PDR), and delay in different scenarios. We consider two other metrics in order to capture the efficiency of the energy consumption: e-throughput which is the ratio between the consumed energy and the throughput; and the e-PDR which is the ratio between the consumed energy and the PDR. We compare four routing protocols: AODV, OLSR, and HWMP in Reactive and Proactive modes. The number of nodes is varying between 25 and 81 nodes, with different mobility models. Simulations are conducted using NS3 and the parameters of a real network interface card. From the results, AODV presents the lowest energy consumption and a better e-Throughput. OLSR provides a better e-PDR in mobile scenarios. With a smaller e-PDR and e-Throughput, the proactive mode of HWMP is more energy efficient than the reactive mode.