A resolução de problemas conhecidos por grand challenge, como é o caso da previsão do tempo por meio de modelos numéricos, demandam computação de alto desempenho. Apesar da consolidação dos clusters como solução para prover alto desempenho, a escolha dos computadores que o compõe está submetida à variabilidade das configurações disponíveis no mercado. De fato, a inserção de processadores multi-core em ambientes de cluster cria um cenário distinto no que diz respeito à comunicação entre processos. Nesse contexto, propõe-se uma abordagem em que alguns núcleos de processamento não são alocados a processos da aplicação, com o intuito de construir clusters econômicos mas também eficientes, interconectados por Gigabit Ethernet em alternativa a redes de interconexão como Myrinet e lnfiniband. Experimentos com o modelo numérico de previsão do tempo WRF (Weather Research and Forecasting Model) e o algoritmo de granularidade fina IS do NAS Parallel Benchmarks, revelaram redução de mais de 20% no tempo de execução. Portanto, os resultados empíricos indicam um ganho expressivo no desempenho de um mesmo cluster quando configurado segundo a abordagem proposta, provando a pertinência deste trabalho.