In this work, the self-heating effect (SHE) on metal gate multiple-fin SOI FinFETs is studied by adopting the ac conductance technique to extract the thermal resistance and temperature rise in both n-channel and p-channel SOI FinFETs with various geometry parameters. It is shown that the SHE degrades by over 10% of the saturation output current in the n-channel and by over 7% in the p-channel. The extracted thermal resistances R th increase with the scaled down gate length, reducing the number of fin and shrinking the fin width. The temperature rise caused by the SHE increases with the scaled down gate length, increasing the number of fin and shrinking the fin width under the saturated operation condition. Additionally, due to a larger power density in the n-channel SOI FinFETs under the same bias condition, the temperature in the n-channel FinFETs is higher than that in the p-channel FinFETs. Because the Si thermal conductivity decreases as the temperature increases, R th is larger in the n-channel FinFETs than in the p-channel FinFETs. Therefore, tradeoffs have to be made between the thermal properties and the device's electrical performance by careful design optimizations of SOI FinFETs.